Summarization of data (Measures of central location)

Professor Narjis A-H Ajeel

Learning objectives

At the end of the lecture you should be able to:

- Calculate and interpret the following measures of central location:

 -arithmetic mean
 -median
 -mode
 -geometric mean
- 2. Choose and apply the appropriate measure of central location.

Summarization of Data

Two types of summary measures are used when describing data (distribution):

- 1. Measures of central location
- 2. Measures variability or spread

Measures of Central Location

- Measures of central location are numbers that tend to cluster around the "middle" of a set of values.
- They are also known as measures of central tendency

1.Measures of Central Location

- They are numbers that tend to cluster around the "middle" of a set of values.
- They are also known as measures of central tendency

1.The mean (arithmetic mean)

The mean is the average of all the data values in a distribution

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Example (1)

The reported time on the Internet of 10 adults are 0, 7, 12, 5, 33, 14, 8, 0, 9, 22 hours/week. Find the mean time on the Internet.

$$\overline{x} = \frac{\sum x}{n} = \frac{0 + 7 + \dots + 22}{10} = 11$$

Population mean = μ (mu)

The Mean of Grouped Data

• The mean of a sample of data organized in a frequency distribution is computed by the following formula:

$$\overline{X} = \frac{\Sigma f X}{\Sigma f} = \frac{\Sigma f X}{n}$$

- > Where:
- $\sum fx$ is the sum of the product of X times the frequency
- Σf is the sum of the frequencies = n (the sample size)

Example (2):

Calculation of the mean number of previous pregnancies of a group of women attending the antenatal clinic:

Number of Previous pregnancies	Frequency (f)	fx
0	18	0
1	32	32
2	27	54
3	17	51
4	6	24
	∑f=100	∑fx=161
$\bar{x} = \frac{\sum fx}{n} = \sum fx / \sum f = 161 / 100 = 1.61$		

Age(years)	No. of females(f)	Midpoint (X)	fX
10-	1	12.5	12.5
15-	7	17.5	122.5
20-	14	22.5	630
25-	28	27.5	770
30-	41	32.5	1332.5
35-	30	37.5	1125
40-	15	42.5	637.5
45-	18	47.5	855
50-	10	52.5	525
55-60	2	57.5	115
Total	∑f=n=166		∑fX=6125

Example 3:Calculation of the mean age of females.

—Mean = $\sum f x / \sum f = 6125 / 166 = 36.898$ years

Where:

- X is the class midpoint
- ΣfX, is the sum of the product of class interval midpoint times the class frequency
- Σf is the sum of the class frequencies = n (the sample size)

Properties of the mean

- 1. The most commonly used measure of central location
- 2. Uses every value (uses all observations)
- 3. For each set of data there is only one mean.
- 4. Influenced (affected) by extreme values (high and low)

<u>2. The Median</u>

The Median is the "middle" value when the observations are arranged in ascending or descending order.

Steps for finding the median

- 1. Arrange observations in ascending or descending order
- Find the position of the median: n + 1 Median position = ----- 2
- If n is odd, the median is the middle observation
- If n is even, the median is the average of the two middle observations

Example

Find the median of the time on the internet for the 10 adults of the example Median position=10+12 =5.5

Even number of observations

8.5 0, 0, 5, 7, **[8, 9]**, 12, 14, 22, 33

Suppose only 9 adults were Sampled exclude, for example, the longest time (33) Median position=9<u>+1</u> 2

=5

Odd number of observations

0, 0, 5, 7, [8], 9, 12, 14, 22

The Median of Grouped Data

The median of a sample of data organized in a frequency distribution is computed by the following formula:

$$Median = L + \frac{\frac{n}{2} - CF}{f}.w$$

> Where:

- *L* is the lower limit of the median class
- *n* is the sample size
- *CF* is the cumulative frequency preceding the median class
- *f* is the frequency of the median class
- w is the width of the class interval.

Example 1.

Number of Previous pregnancies	Frequency (f)	Cumulative frequency
0	18	18
1	30	48
2	29	77
3	17	94
4	6	100
	∑f=100	
		19

 \Box The position of the median=n+1/2=50.5

□ Therefore the median is= 2, since observations 50 and 51 are =2.

Example 2.				
Age(years)	No. of females(f)	Cumulative frequency		
10-	1	1		
15-	7	8		
20-	14	22		
25-	28	50		
30-	41	91		
35-	30	121		
40-	15	136		
45-	18	154		
50-	10	164		
55-60	2	166		
Total	∑f=n=166			

- □ The median class is 30 -, since it contains the 83^{rd} and the 84^{th} values (*n*+1/2=83.5).
- □ From the table, L = 30, n = 166, f = 41, CF = 50, w=5.

Thus, the median =
$$30 + (\frac{\frac{166}{2} - 50}{41})(5) = 34.024$$
 years

Properties of the median

- 1. It divides the observations into two equal halves (50% of the observations above and 50% below the median)
- 2. Uses only one or two values
- 3. For each set of data there is only one median.
- 4. It is not affected by extreme values

3. <u>The Mode</u>

The mode is the most frequently occurring observation (value).

Properties of the mode

- 1. It is not affected by extreme values
- 2. A set of data may have no mode , one mode , two modes or more .

Relationship among Mean, Median, and Mode

- If a distribution is symmetrical, the mean, median and mode coincide
- If a distribution is non symmetrical, and skewed to the left or to the right, the three measures differ.

Types of distributions

Positively (Right) skewed distribution

Positively skewed: Mean and Median are to the right of the Mode

Mode < Median < Mean

Negatively (Left) skewed distribution

Negatively skewed: Mean and Median are to the left of the Mode

Mean < Median < Mode

The Geometric Mean:

Definition: The geometric mean (GM) of a set of *n* numbers is defined as the *nth* root of the product of *n* numbers. The formula for the geometric mean is given by:

$$GM = \sqrt[n]{(X_1)(X_2)(X_3)...(X_n)}$$

Geometric mean is also defined as the antilog of the mean of the logs x_i

The geometric mean:

- -. Take the logarithm of each score
- Average the log values (mean of the logs).
- Calculate the antilog.

 $Geometric mean = anti \log \frac{\log X_1 + \log X_2 + \ldots + \log X_n}{n}$

Sample	E. coli. counts	Log
1	160	2.20
2	700	2.85
3	60	1.78
4	12000	3.51
Average		2.58 5

